Merchandise Description

SMRV sequence worm-equipment velocity reducer is a new-technology of products produced by our firm with mixture of innovative by engineering each at property and abroad.

Qualities:
(1)Massive output torque
(2) Risk-free, dependable, economical and sturdy
(3) Steady transmission, quiet operation
(4)Large heat-radiating performance, large carrying capability
(5) Blend of 2 single-step worm equipment velocity reducers, conference the needs of tremendous velocity ratio
 Technical information:
(1)  Iput electricity:.06kw-15kw
(2)  Output torque:4-2320N.M
(3)  Speed ratio: 5/ten/fifteen/twenty/twenty five/30/40/50/60/eighty/one hundred
(4)  With IEC input flange: 56B14/71B14/80B5/90B5…
 Materials:
(1)   NMRV571-NMRV090: Aluminium alloy housing
(2)   NMRV110-150: Forged iron housing
(3)   Bearing: CZPT bearing & Selfmade bearing
(4)   Lubricant: Synthetic & Mineral
Shade:
(1)   Blue / Mild blue
(2)   Silvery White
 Quality manage
(1)  High quality assure: 1 calendar year
(2)  Certificate of high quality: ISO9001:2000
(3)   Every solution have to be tested prior to sending

 

Motor power  Model pace ratio output pace output toruqe
.06kw 1400rpm NMRV030 five 280rpm  2.0N.M
NMRV030 7.five 186rpm  2.6N.M
NMRV030 ten 140rpm  3.3N.M
NMRV030 15 94rpm  4.7N.M
NMRV030 20 70rpm  5.9N.M
NMRV030 25 56rpm  6.8N.M
NMRV030 30 47rpm  7.9N.M
NMRV030 40 35rpm  9.7N.M
NMRV030 fifty 28rpm eleven.0N.M
NMRV030 60 24rpm twelve.0N.M
NMRV030 80 18rpm fourteen.0N.M
.09kw 1400rpm NMRV030 5 280rpm  2.7N.M
NMRV030 seven.five 186rpm  3.9N.M
NMRV030 10 140rpm  5.0N.M
NMRV030 15 94rpm  7.0N.M
NMRV030 twenty 70rpm  8.8N.M
NMRV030 25 56rpm ten.0N.M
NMRV030 30 47rpm twelve.0N.M
NMRV030 forty 35rpm fourteen.0N.M
NMRV030 50 28rpm seventeen.0N.M
NMRV030 sixty 24rpm eighteen.0N.M
0.12kw 1400rpm NMRV030 five 280rpm  3.6N.M
NMRV030 7.5 186rpm  5.2N.M
NMRV030 ten 140rpm  6.6N.M
NMRV030 fifteen 94rpm  9.3N.M
NMRV030 twenty 70rpm twelve.0N.M
NMRV030 twenty five 56rpm 14.0N.M
NMRV030 30 47rpm sixteen.0N.M
NMRV030 40 35rpm 19.0N.M
NMRV030 50 28rpm 22.0N.M

US $23
/ Piece
|
1 Piece

(Min. Order)

###

Shipping Cost:

Estimated freight per unit.



To be negotiated|


Freight Cost Calculator

###

Application: Industry
Function: Speed Reduction
Layout: Cycloidal

###

Customization:

###

Motor power  Model speed ratio output speed output toruqe
0.06kw 1400rpm NMRV030 5 280rpm  2.0N.M
NMRV030 7.5 186rpm  2.6N.M
NMRV030 10 140rpm  3.3N.M
NMRV030 15 94rpm  4.7N.M
NMRV030 20 70rpm  5.9N.M
NMRV030 25 56rpm  6.8N.M
NMRV030 30 47rpm  7.9N.M
NMRV030 40 35rpm  9.7N.M
NMRV030 50 28rpm 11.0N.M
NMRV030 60 24rpm 12.0N.M
NMRV030 80 18rpm 14.0N.M
0.09kw 1400rpm NMRV030 5 280rpm  2.7N.M
NMRV030 7.5 186rpm  3.9N.M
NMRV030 10 140rpm  5.0N.M
NMRV030 15 94rpm  7.0N.M
NMRV030 20 70rpm  8.8N.M
NMRV030 25 56rpm 10.0N.M
NMRV030 30 47rpm 12.0N.M
NMRV030 40 35rpm 14.0N.M
NMRV030 50 28rpm 17.0N.M
NMRV030 60 24rpm 18.0N.M
0.12kw 1400rpm NMRV030 5 280rpm  3.6N.M
NMRV030 7.5 186rpm  5.2N.M
NMRV030 10 140rpm  6.6N.M
NMRV030 15 94rpm  9.3N.M
NMRV030 20 70rpm 12.0N.M
NMRV030 25 56rpm 14.0N.M
NMRV030 30 47rpm 16.0N.M
NMRV030 40 35rpm 19.0N.M
NMRV030 50 28rpm 22.0N.M
US $23
/ Piece
|
1 Piece

(Min. Order)

###

Shipping Cost:

Estimated freight per unit.



To be negotiated|


Freight Cost Calculator

###

Application: Industry
Function: Speed Reduction
Layout: Cycloidal

###

Customization:

###

Motor power  Model speed ratio output speed output toruqe
0.06kw 1400rpm NMRV030 5 280rpm  2.0N.M
NMRV030 7.5 186rpm  2.6N.M
NMRV030 10 140rpm  3.3N.M
NMRV030 15 94rpm  4.7N.M
NMRV030 20 70rpm  5.9N.M
NMRV030 25 56rpm  6.8N.M
NMRV030 30 47rpm  7.9N.M
NMRV030 40 35rpm  9.7N.M
NMRV030 50 28rpm 11.0N.M
NMRV030 60 24rpm 12.0N.M
NMRV030 80 18rpm 14.0N.M
0.09kw 1400rpm NMRV030 5 280rpm  2.7N.M
NMRV030 7.5 186rpm  3.9N.M
NMRV030 10 140rpm  5.0N.M
NMRV030 15 94rpm  7.0N.M
NMRV030 20 70rpm  8.8N.M
NMRV030 25 56rpm 10.0N.M
NMRV030 30 47rpm 12.0N.M
NMRV030 40 35rpm 14.0N.M
NMRV030 50 28rpm 17.0N.M
NMRV030 60 24rpm 18.0N.M
0.12kw 1400rpm NMRV030 5 280rpm  3.6N.M
NMRV030 7.5 186rpm  5.2N.M
NMRV030 10 140rpm  6.6N.M
NMRV030 15 94rpm  9.3N.M
NMRV030 20 70rpm 12.0N.M
NMRV030 25 56rpm 14.0N.M
NMRV030 30 47rpm 16.0N.M
NMRV030 40 35rpm 19.0N.M
NMRV030 50 28rpm 22.0N.M

The Basics of Designing a Cyclone Gearbox

Compared to conventional gearboxes, the cycloidal gearbox offers a number of advantages including a higher ratio of transmission, robustness against shock loads, and greater positioning accuracy. However, designing a cycloidal gearbox can be complicated. This article will discuss some of the basic design principles. In addition, it will cover topics such as size, position accuracy, and transmission ratios.helical gearbox

Basic design principles

Unlike a conventional ring gear, a cycloidal gearbox uses a cycloidal disc to provide torque multiplication. The output direction of the cycloidal gear disc is opposite to the rotation of the input shaft. This allows for more compact gear construction. It also allows for increased load capacity.
Cycloid drive kinematics can appear complex, but they are actually quite simple. Instead of rotating around the center of gravity like conventional gears, the cycloidal disc rotates around fixed pins. This provides a higher reduction ratio.
To reduce vibrations and noise, multiple cycloidal discs are used. This allows for uniform distribution of forces on the carrier pin devices. This also provides a better rotational balance. In addition, multiple cycloidal discs reduce the axial moment of the carrier pin devices.
The cycloidal gear disc is supported by a separate gear disc bearing. This design provides a low component count and reduces wear. This type of kinematics can also be used in an electric motor with a high power density.
The cycloidal gear disc provides a high reduction ratio, which allows for compact construction. Unlike a ring gear, the cycloidal disc has fewer teeth. It also provides a higher reduction ratio, which is advantageous for high rotational input speed applications.
Cycloid gear discs have cylindrical holes, which allow for carrier pin devices to protrude through them. This is useful because the carrier pin devices can roll along the inside wall of the cylindrical hole in the gear disc.
A load plate is also used to provide anchorage for external structures. This plate contains threaded screw holes arranged 15mm away from the center. It has a 9mm external diameter and a 3mm through hole.

Transmission ratios up to 300:1

cycloidal gearboxes are used in a wide range of applications, from machine tools to medical imaging devices. Compared to planetary gearboxes, they offer superior positioning accuracy, torsional stiffness, backlash, and fatigue performance.
Cycloid gearboxes are also capable of transmitting more torque than planetary gears. In addition, they have a lower Hertzian contact stress and higher overload protection. Cycloid gearboxes are able to provide transmission ratios up to 300:1 in a small package.
Cycloid gears also have lower backlash over extended periods, making them an ideal choice for applications with critical positioning accuracy. Cycloid gearboxes also have good wear resistance, as well as low friction. Cycloid gears are lightweight and have good torsional stiffness, making them ideal for applications with heavy loads.
Cycloid gearboxes have several different designs. They can provide transmission ratios up to 300:1 without the need for additional pre-stages. Cycloid gears also require more accurate manufacturing processes than involute gears. Cycloid gearboxes can also be used for applications that require high power consumption, and can withstand shock loads.
Cycloid gearboxes can be adapted to fit most common servomotors. They have a modular design, all-round corrosion protection, and easy installation. Cycloid gears have a radial clamping ring, which reduces inertia by up to 39%.
CZPT Precision Europe GmbH, a subsidiary of CZPT Group, has developed an innovative online configurator to simplify the configuration of gearboxes. CZPT cycloidal gearheads are precision-built, robust, and reliable. They have a two-stage reduction principle, which minimises vibration and provides even force distribution.
Cycloid gears are capable of providing transmission ratios from 30:1 to 300:1. Cycloid gearboxes can achieve high gear ratios because they require fewer moving parts, and they have a low backlash.helical gearbox

Robustness against shock loads

Unlike conventional gearboxes that are easily damaged by shock loads, the cycloidal gearbox is extremely robust. It is a versatile solution that is ideally suited for handling equipment, food manufacturing, and machine tools.
The mechanical construction of a cycloidal gearbox consists of several mechanical components. These include cycloidal wheels, bearings, transformation elements, and needles. In addition, it has high torsional stiffness and tilting moment. It is also accompanied by highly nonlinear friction characteristic.
In order to assess the robustness of the cycloidal gearbox against shock loads, a mathematical model was developed. The model was used to calculate the stress distribution on the cycloid disc. This model can be used as a basis for more complex mechanical models.
The model is based on new approach, which allows to model stiction in all quadrants of the cycloid gear. In addition, it can be applied to actuator control.
The mathematical model is presented together with the procedure for measuring the contact stress. The results are compared to the measurement performed in the real system. The model and the measurement are found to be very close to each other.
The model also allows for the analysis of different gear profiles for load distribution. In addition, it is possible to analyze contact stresses with different geometric parameters. The mesh refinement along the disc width helps to ensure an even distribution of contact forces.
The stiction breakaway speed is calculated to the motor side. The non-zero current is then derived to the input side of the gearbox. In addition, a small steady phase is modeled during the speed direction transition. The results of the simulation are compared to the measurement. The results show that the model is extremely accurate.

Positioning accuracy

Getting the correct positioning accuracy from a cycloidal gearbox is no small feat. This is because the gears are compact, and the clearances are relatively small. This means you can expect a lot of torque from your output shaft. However, this is only part of the picture. Other concerns, such as backlash, kinematic error, and loading are all important considerations.
Getting the best possible positioning accuracy from a cycloidal gearbox means choosing a reducer that is well-made and correctly configured. A properly-selected reducer will eliminate repeatable inaccuracies and provide absolute positioning accuracy at all times. In addition, this type of gearbox offers several advantages over conventional gearboxes. These include high efficiency, low backlash, and high overload protection.
Getting the correct positioning accuracy from a gearbox also involves choosing a supplier that knows what it is doing. The best vendors are those who have experience with the product, offer a wide variety, and provide support and service to ensure the product is installed and maintained correctly. Another consideration is the manufacturer’s warranty. A reputable manufacturer will offer warranties for the gearbox. The aforementioned factors will ensure that your investment in a cycloidal gearbox pays off for years to come.
Getting the correct positioning accuracy from your cycloidal gearbox involves choosing a manufacturer that specializes in this type of product. This is particularly true if you are involved in robotics, automated painting, or any other industrial process that requires the best possible accuracy. A good manufacturer will offer the latest technology, and have the expertise to help you find the best solution for your application. This will ensure your product is a success from start to finish.helical gearbox

Size

Choosing the right size of cycloidal gearbox is important for its efficient operation. However, it is not a simple task. The process involves complex machining and requires the creation of many parts. There are different sizes of cycloidal gearboxes, and a few basic rules of thumb can help you choose the right size.
The first rule of thumb for choosing the right size of cycloidal gearboxes is to use a gearbox with the same diameter of the input shaft. This means that the gearbox must be at least 5mm thick. The cycloid will also require a base and a bearing to hold the driveshaft in place. The base should be large enough to house the pins. The bearing must be the same size as the input shaft.
The next rule of thumb is to have a hole in the cycloid for the output shaft. In this way, the output will be back-drivable and has low backlash. There should be at least four to six output holes. The size of the holes should be such that the centerline of the cycloid is equal to the size of the center of the bearing.
Using a Desmos graph, you can then create the gear parameters. The number of pins should be equal to the number of teeth in the cycloidal gear, and the size of the pins should be twice the size of the gear. The radius of the pins should be equal to the value of C from Desmos, and the size of the pin circle should be equal to the R value.
The final rule of thumb is to ensure that the cycloid has no sharp edges or discontinuities. It should also have a smooth line.
China RV Series Worm Gearboxes with Output Flange     cycloidal gearboxesChina RV Series Worm Gearboxes with Output Flange     cycloidal gearboxes
editor by czh 2022-12-30